
Transport Layer Security
(TLS)

Bill Burr
william.burr@nist.gov
June 17, 2002

Transport Layer Security (TLS)
♦ Version 3.1 of Secure Socket Layer (SSL)

– “standardized” by IETF RFC2246
– Several earlier versions

• V2 not very secure

♦ End-to-end between a client and server
– Sits on top of TCP
– Requires reliable connection

♦ Most important Internet crypto protocol?
– Secure web pages
– E-mail and LDAP access control

Generic Key Agreement Model

KDF

CLIENT SERVER

Secret H

“C”||N1||N2

H

E
Wrapped PreSec

PreSec
This envelope

contains a
wrapped key PreSec

RNG N1

RNGN2

Public Key Private Key

T1

T2

KDF

Secret

D

“S”||N1||N2Bert Kaliski Figure from NIST Key Mgt Workshop

TLS Example: Client Authent.
Client Server

Client Hello
supported ciphers
client_random
compression Server Hello

TLS_RSA_WITH_3DES...
Server_random
compression
session_ID

Certificate
Server RSA Certificate

Certificate Request
certiricte_types
certificate_authorities

Hello Done

Optional messages for
client authentication have
gold background

TLS Example: Client Authent.
Client Server

Client Certificate
client’s PK certificate

Client Key Exchange
ESK(pre_master_secret)

Certificate Verify
Signature (prev. messages)

Change Cipher Spec

Handshake Finished
verify_data

Change Cipher Spec

Handshake Finished
verify_data

3DES Cipher Suites
♦ TLS_RSA_WITH_3DES_EDE_CBC_SHA
♦ TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
♦ TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
♦ TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
♦ TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
♦ TLS_RSA_WITH_NULL_SHA

AES Cipher Suites
♦ TLS_RSA_WITH_AES_128_CBC_SHA
♦ TLS_DH_DSS_WITH_AES_128_CBC_SHA
♦ TLS_DH_RSA_WITH_AES_128_CBC_SHA
♦ TLS_DHE_DSS_WITH_AES_128_CBC_SHA
♦ TLS_DHE_RSA_WITH_AES_128_CBC_SHA
♦ TLS_RSA_WITH_AES_256_CBC_SHA
♦ TLS_DH_DSS_WITH_AES_256_CBC_SHA
♦ TLS_DH_RSA_WITH_AES_256_CBC_SHA
♦ TLS_DHE_DSS_WITH_AES_256_CBC_SHA
♦ TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Pseudorandom Function (PFR)

♦ Feeds a secret, a label, and a seed into an
iterated HMAC to generate a pseudorandom
stream

♦ Uses SHA1 & MD5
– Intended to be secure if either is secure

• The secret is split into halves, and one half is fed
into the SHA1 HMAC and the other into the MD5
HMAC and the outputs are exclusive ORED. If one
hash is bad enough, entropy would be lost.

Pseudorandom Function (PRF)

P_hash(secret, seed) = HMAC_hash(secret, A(1) || seed) ||
HMAC_hash(secret, A(2) || seed) || HMAC_hash(secret, A(3) || seed) ||
...

Where || indicates concatenation.

 A() is defined as:
 A(0) = seed
 A(i) = HMAC_hash(secret, A(i-1))

P_hash is iterated to produce the required quantity of data.

TLS's PRF is created by splitting the secret into two halves and
using one half to generate data with P_MD5 and the other half to
generate data with P_SHA-1, then exclusive-or'ing the outputs of
these two expansion functions together.

PRF(secret, label, seed) = P_MD5(S1, label || seed) XOR P_SHA-1(S2,
label || seed);

Pseudorandom Function (PRF)
♦ Used with pre_master_secret, client-random

server_random & label “master_secret” to
generate 48-byte master-secret

♦ Used with master_secret, server_random,
client_random & label “key expansion” to
generate key block

♦ Also used to generate the verify_data key
confirmation parameter of the Handshake
Finished message

Proposed Client Guidance
♦ Only do TLS (version 3.1)

– But client is normally expected to be able to do highest
version specified in Client Hello, plus every previous
version!

♦ Server can choose any suite the client includes in
Client Hello message, so

♦ Offer only 3DES or AES Cipher suites
– Never include 40 or 56-bit suites
– Encryption not required but anonymous cipher suites

not allowed
♦ 1024-bit RSA/DSA client certificates are OK until

2015

Proposed Server Guidance
♦ Implement only TLS, not SSL

– Clients that can’t do TLS are out of luck
♦ Use only 3DES or AES Cipher Suites
♦ Server key management certificate subject

key size needs to match confidentiality
requirements
– If data must be kept secret after 2015, then

RSA/DH encryption keys larger than 1024 are
needed.

For Maximum Security
♦ RSA or DSA authentication with ephemeral

Diffie-Hellman key exchange
– E.g., TLS_DHE_RSA_WITH_AES_128_CBC_SHA
– Perfect forward secrecy
– Potentially large DH keys for long term confidentiality,

with whatever authentication key size is currently
needed

♦ But,
– How many products do ephemeral Diffie-Hellman?
– Performance price?

Issues
♦ Do implementations check server identity?
♦ Use of same RSA server key for authentication

and key management
♦ Is payload SHA-1 HMAC strong enough for 112,

128 & 256-bit encryption?
♦ Is 96-bit verify-data key confirmation strong

enough for 112, 128 & 256-bit encryption?
♦ Is the PRF strong enough for 112, 128 & 256-bit

encryption?
– Does MD5 HMAC poison the well?

♦ “Non-standard” signature formats
♦ Diffie-Hellman doesn’t follow a NIST scheme

Issues
♦ Performance bottleneck is the server

– Server gets to pick cipher suite
– Weaker crypto (e.g. 512-bit RSA and RC4) is faster

than 1024-bit RSA & 3DES or AES
• do servers normally select weaker alternatives
• do some servers not do 3DES at all?

– Some old clients still do only 40-bit RC4
• do servers select 40-bit when they could use 128?

♦ How do you configure clients and servers to select
the stronger alternatives?

Questions and Discussion

